對兩個遠距離(相距大于1-2mm)的成像部位,通常使用兩條單獨的路徑進行成像;對于相鄰區域,通常使用單個物鏡的多光束進行成像。多光束掃描技術必須特別注意激發光束之間的串擾問題,這個問題可以通過事后光源分離方法或時空復用方法來解決。事后光源分離方法指的是用算法來分離光束消除串擾;時空復用方法指的是同時使用多個激發光束,每個光束的脈沖在時間上延遲,這樣就可以暫時分離被不同光束激發的單個熒光信號。引入越多路光束就可以對越多的神經元進行成像,但是多路光束會導致熒光衰減時間的重疊增加,從而限制了區分信號源的能力;并且多路復用對電子設備的工作速率有很高的要求;大量的光束也需要更高的激光功率來維持近似單光束的信噪比,這會容易導致組織損傷。未來國產多光子激光掃描顯微鏡替代空間大。高速高分辨率多光子顯微鏡數據處理
光學成像技術與分子生物學技術的結合為研究上述科學問題提供了條件與可能。因此,在現代分子生物學技術基礎上,急需發展新的成像技術。在動物體內,如何實現基因表達及蛋白質之間相五作用的實時在體成像監測是當前迫切需要解決的重大科學技術問題。這是也生物學、信息科學(光學)和基礎臨床醫學等學科共同感興趣的重大問題。對這-一一科學問題的研究不僅有助于闡明生命活動的基本規律、認識疾病的發展規律,而且對創新藥物研究、藥物療效評價以及發展疾病早期診斷技術等產生重大影響。激光掃描多光子顯微鏡原理多光子顯微鏡在基礎科學和臨床診斷領域的應用范圍正在持續增長。
多光子激發掃描顯微成像系統的不足。只能對熒光成像。如果樣品包括能夠吸收激發光的色團,如色素,樣品可能受到熱損傷。分辨率略有降低,雖然可以通過同時利用共焦的小孔得到改善,但是信號會有損耗。受昂貴的超快激光器限制,多光子掃描顯微鏡的成本較高。多光子激發顯微鏡應用舉例。動物和腦片神經細胞結構與功能、動物腦皮層的成像、胚胎發育過程的長時間動態觀測、多光子激發光解籠、細胞內微區鈣動力學、多光子激發自發熒光、其它應用。
多束掃描技術可以同時對神經元組織的不同位置進行成像對兩個遠距離(相距大于1-2mm)的成像部位,通常使用兩條單獨的路徑進行成像;對于相鄰區域,通常使用單個物鏡的多光束進行成像。多光束掃描技術必須特別注意激發光束之間的串擾問題,這個問題可以通過事后光源分離方法或時空復用方法來解決。事后光源分離方法指的是用算法來分離光束消除串擾;時空復用方法指的是同時使用多個激發光束,每個光束的脈沖在時間上延遲,這樣就可以暫時分離被不同光束激發的單個熒光信號。引入越多路光束就可以對越多的神經元進行成像,但是多路光束會導致熒光衰減時間的重疊增加,從而限制了區分信號源的能力;并且多路復用對電子設備的工作速率有很高的要求;大量的光束也需要更高的激光功率來維持近似單光束的信噪比,這會容易導致組織損傷。生產和消費的角度分析多光子顯微鏡的主要生產地區、主要消費地區以及主要的生產商。
多束掃描技術可以同時對神經元組織的不同位置進行成像。該技術:對于兩個遠程成像位置(相距1-2mm以上),通常采用兩個**的路徑進行成像;對于相鄰區域,通常使用單個物鏡的多個光束進行成像。多光束掃描技術必須特別注意激發光束之間的串擾,這可以通過事后光源分離或時空復用來解決。事后光源分離法是指分離光束以消除串擾的算法;時空復用法是指同時使用多個激發光束,每個光束的脈沖在時間上被延遲,使不同光束激發的單個熒光信號可以暫時分離。引入的光束越多,可以成像的神經元越多,但多束會導致熒光衰減時間重疊增加,從而限制了分辨信號源的能力;并且復用對電子設備的工作速度要求很高;大量的光束也需要較高的激光功率來維持單束的信噪比,這樣容易導致組織損傷。使用雙光子顯微鏡觀察標本的時候,只有在焦平面上才有光漂白和光毒性。美國嚙齒類多光子顯微鏡原理
光子顯微成像技術不是什么新技術,早在20多年前就有了,目前已經在生命科學和材料科學中廣泛應用。高速高分辨率多光子顯微鏡數據處理
多光子顯微鏡成像深度深、對比度高,在生物成像中具有重要意義,但通常需要較高的功率。結合時間傳播的超短脈沖可以實現超快的掃描速度和較深的成像深度,但近紅外波段的光本身會導致分辨率較低?;诙喙庾由限D換材料和時間編碼結構光顯微鏡的高速超分辨成像系統(MUTE-SIM)是由清華大學教授和北京大學彭研究員合作開發的。可實現50MHz的超高掃描速度,突破衍射極限,實現超分辨率成像。與普通熒光顯微鏡相比,該顯微鏡經過改進,只需要較低的激發功率。這種超快、低功耗、多光子超分辨率技術在高分辨率生物深層組織成像中具有長遠的應用前景。高速高分辨率多光子顯微鏡數據處理