新材料或將成為國產MEMS發展的新機會。截止到目前,硅基MEMS發展已經有40多年的發展歷程,如何提高產品性能、降低成本是全球企業都在思考的問題,而基于新材料的MEMS器件則成為擺在眼前的大奶酪,PZT、氮化鋁、氧化釩、鍺等新材料MEMS器件的研究正在進行中,搶先一步投入應用,將是國產MEMS彎道超車的好時機。另外,將多種單一功能傳感器組合成多功能合一的傳感器模組,再進行集成一體化,也是MEMS產業新機會。提高自主創新意識,加強創新能力,也不是那么的遙遠。MEMS 微納米加工技術是現代制造業中的關鍵領域,它能夠在微觀尺度上制造出高精度的器件。安徽MEMS微納米加工之PI柔性器件 MEMS制作...
熱敏柔性電極的PI三明治結構加工技術:熱敏柔性電極采用PI(聚酰亞胺)三明治結構,底層PI作為柔性基板,中間層為金屬電極,上層PI實現絕緣保護,開窗漏出Pad引線位置,兼具柔韌性與電學性能。加工過程中,首先在25μm厚度的PI基板上通過濺射沉積5μm厚度的銅/金電極層,利用光刻膠作為掩膜進行濕法刻蝕,形成10-50μm寬度的電極圖案,線條邊緣粗糙度<1μm;然后涂覆10μm厚度的PI絕緣層,通過激光切割開設引線窗口,窗口定位精度±5μm;***經300℃高溫亞胺化處理,提升層間結合力(剝離強度>10N/cm)。該電極的彎曲半徑可達5mm,耐彎折次數>10萬次,表面電阻<5Ω/□,適用于可穿戴體...
弧形柱子點陣的微納加工技術:弧形柱子點陣結構在細胞黏附、流體動力學調控中具有重要應用,公司通過激光直寫與反應離子刻蝕(RIE)技術實現該結構的精密加工。首先利用激光直寫系統在光刻膠上繪制弧形軌跡,**小曲率半徑可達5μm,線條寬度10-50μm;然后通過RIE刻蝕硅片或石英基板,刻蝕速率50-200nm/min,側壁弧度偏差<±2°。柱子高度50-500μm,間距20-100μm,陣列密度可達10?個/cm2。在細胞培養芯片中,弧形柱子表面通過RGD多肽修飾,促進成纖維細胞沿曲率方向鋪展,細胞取向率提升70%,用于肌腱組織工程研究。在微流控芯片中,弧形柱子陣列可降低流體阻力30%,減少氣泡滯留...
MEMS組合慣性傳感器不是一種新的MEMS傳感器類型,而是指加速度傳感器、陀螺儀、磁傳感器等的組合,利用各種慣性傳感器的特性,立體運動的檢測。組合慣性傳感器的一個被廣為熟悉的應用領域就是慣性導航,比如飛機/導彈飛行控制、姿態控制、偏航阻尼等控制應用、以及中程導彈制導、慣性GPS導航等制導應用。 慣性傳感器分為兩大類:一類是角速率陀螺;另一類是線加速度計。角速率陀螺又分為:機械式干式﹑液浮﹑半液浮﹑氣浮角速率陀螺;撓性角速率陀螺;MEMS硅﹑石英角速率陀螺(含半球諧振角速率陀螺等);光纖角速率陀螺;激光角速率陀螺等。線加速度計又分為:機械式線加速度計;撓性線加速度計;MEMS硅﹑石英線...
MEA柔性電極的MEMS制造工藝:公司開發的腦機接口用MEA(微電極陣列)柔性電極,采用聚酰亞胺或PDMS作為柔性基底,通過光刻、金屬蒸鍍與電化學沉積工藝,構建高密度“觸凸”式電極陣列。電極點直徑可縮至20微米,間距50微米,表面修飾PEDOT:PSS導電聚合物,電荷注入容量(CIC)達2mC/cm2,信噪比(SNR)提升至25dB以上。制造過程中,通過激光切割與等離子體鍵合技術,實現電極與柔性電路的可靠封裝。該工藝支持定制化設計,例如針對癲癇監測的16通道電極,植入后機械應力降低70%,使用壽命延長至3年。此外,電極陣列可集成于類***培養芯片,實時監測神經元放電頻率與網絡同步性,為神經退行...
MEMS組合慣性傳感器不是一種新的MEMS傳感器類型,而是指加速度傳感器、陀螺儀、磁傳感器等的組合,利用各種慣性傳感器的特性,立體運動的檢測。組合慣性傳感器的一個被廣為熟悉的應用領域就是慣性導航,比如飛機/導彈飛行控制、姿態控制、偏航阻尼等控制應用、以及中程導彈制導、慣性GPS導航等制導應用。 慣性傳感器分為兩大類:一類是角速率陀螺;另一類是線加速度計。角速率陀螺又分為:機械式干式﹑液浮﹑半液浮﹑氣浮角速率陀螺;撓性角速率陀螺;MEMS硅﹑石英角速率陀螺(含半球諧振角速率陀螺等);光纖角速率陀螺;激光角速率陀螺等。線加速度計又分為:機械式線加速度計;撓性線加速度計;MEMS硅﹑石英線...
PDMS金屬流道芯片的復合加工工藝:PDMS金屬流道芯片通過在柔性PDMS流道內集成金屬鍍層,實現流體控制與電信號檢測的一體化設計。加工流程包括:首先利用軟光刻技術在硅模上制備50-200μm寬度的流道結構,澆筑PDMS預聚體并固化成型;然后通過氧等離子體處理流道表面,使其親水化以促進金屬前驅體吸附;采用磁控濺射技術沉積50-200nm厚度的金/鉑金屬層,經化學鍍增厚至1-5μm,形成連續導電流道;***與PET基板通過等離子體鍵合密封,確保流體無泄漏。金屬流道的表面粗糙度<50nm,電阻<10Ω/cm,適用于電化學檢測、電滲泵驅動等場景。典型應用如微流控電化學傳感器,在10μL/min流速下...
智能手機迎5G換機潮,傳感器及RFMEMS用量逐年提升。一方面,5G加速滲透,拉動智能手機市場恢復增長:今年10月份國內5G手機出貨量占比已達64%;智能手機整體出貨量方面,在5G的帶動下,根據IDC今年的預測,2021年智能手機出貨量相比2020年將增長11.6%,2020-2024年CAGR達5.2%。另一方面,單機傳感器和RFMEMS用量不斷提升,以iPhone為例,2007年的iPhone2G到2020年的iPhone12,手機智能化程度不斷升,功能不斷豐富,指紋識別、3Dtouch、ToF、麥克風組合、深度感知(LiDAR)等功能的加入,使得傳感器數量(包含非MEMS傳感器)由當初的...
太赫茲柔性電極的雙面結構設計與加工:太赫茲柔性電極以PI為基底,采用雙面結構設計,上層實現太赫茲波發射/接收,下層集成信號處理電路,解決了傳統剛性太赫茲器件的便攜性難題。加工工藝包括:首先在雙面拋光的PI基板上,利用電子束光刻制備亞微米級金屬天線陣列(如蝴蝶結、螺旋結構),特征尺寸達500nm,周期1-2μm,實現對0.1-1THz頻段的高效耦合;背面通過薄膜沉積技術制備氮化硅絕緣層,濺射銅箔形成共面波導傳輸線,線寬控制精度±10nm,特性阻抗匹配50Ω。電極整體厚度<50μm,彎曲狀態下信號衰減<3dB,適用于人體安檢、非金屬材料檢測等場景。在生物醫學領域,太赫茲柔性電極可非侵入式檢測皮膚水...
MEMS制作工藝柔性電子的定義: 柔性電子可概括為是將有機/無機材料電子器件制作在柔性/可延性塑料或薄金屬基板上的新興電子技術,以其獨特的柔性/延展性以及高效、低成本制造工藝,在信息、能源、醫療等領域具有廣泛應用前景,如柔性電子顯示器、有機發光二極管OLED、印刷RFID、薄膜太陽能電池板、電子用表面粘貼(SkinPatches)等。與傳統IC技術一樣,制造工藝和裝備也是柔性電子技術發展的主要驅動力。柔性電子制造技術水平指標包括芯片特征尺寸和基板面積大小,其關鍵是如何在更大幅面的基板上以更低的成本制造出特征尺寸更小的柔性電子器件。 MEMS的單分子免疫檢測是什么?湖南MEMS微納米加...
神經電子芯片的MEMS微納加工技術與臨床應用:神經電子芯片作為植入式醫療設備的**組件,對微型化、生物相容性及功能集成度提出了極高要求。公司依托0.35/0.18μm高壓工藝,成功開發多通道神經電刺激SoC芯片,可實現無線充電與通訊功能,將控制信號轉化為精細電刺激脈沖,用于神經感知、調控及阻斷。以128像素視網膜假體芯片為例,通過MEMS薄膜沉積技術在硅基基板上制備高密度電極陣列,單個電極尺寸*50μm×50μm,間距100μm,確保對視網膜神經細胞的靶向刺激。芯片表面采用聚酰亞胺(PI)與氮化硅復合涂層,經120℃高溫固化處理后,涂層厚度控制在5-8μm,有效抑制蛋白吸附與炎癥反應,植入體壽...
微流控與金屬片電極的鑲嵌工藝技術:微流控與金屬片電極的鑲嵌工藝實現了流體通道與固態電極的無縫集成,適用于電化學檢測、電滲流驅動等場景。加工過程中,首先在硅片或玻璃基板上制備微流道(深度50-200μm,寬度100-500μm),然后將預加工的金屬片電極(如不銹鋼、金箔)嵌入流道側壁,通過導電膠(銀膠或碳膠)固定,確保電極與流道內壁齊平,間隙<5μm。鍵合采用熱壓或紫外固化膠密封,耐壓>100kPa,漏電流<1nA。金屬片電極的表面積可根據需求設計,如5mm×5mm的金電極,電化學活性面積達20mm2,適用于痕量物質檢測。在水質監測芯片中,鑲嵌的鉑電極可實時檢測溶解氧濃度,響應時間<10秒,檢測...
高壓SOI工藝在MEMS芯片中的應用創新:高壓SOI(絕緣體上硅)工藝是制備高耐壓、低功耗MEMS芯片的**技術,公司在0.18μm節點實現了發射與開關電路的集成創新。通過SOI襯底的埋氧層(厚度1μm)隔離高壓器件與低壓控制電路,耐壓能力達200V以上,漏電流<1nA,適用于神經電刺激、超聲驅動等高壓場景。在神經電子芯片中,高壓SOI工藝實現了128通道**驅動,每通道輸出脈沖寬度1-1000μs可調,幅度0-100V可控,脈沖邊沿抖動<5ns,確保精細的神經信號調制。與傳統體硅工藝相比,SOI芯片的寄生電容降低40%,功耗節省30%,芯片面積縮小50%。公司優化了SOI晶圓的鍵合與減薄工藝...
MEMS制作工藝-微流控芯片: 微流控芯片技術(Microfluidics)是把生物、化學、醫學分析過程的樣品制備、反應、分離、檢測等基本操作單元集成到一塊微米尺度的芯片上,自動完成分析全過程。微流控芯片(microfluidicchip)是當前微全分析系統(MiniaturizedTotalAnalysisSystems)發展的熱點領域。 微流控芯片分析以芯片為操作平臺,同時以分析化學為基礎,以微機電加工技術為依托,以微管道網絡為結構特征,以生命科學為目前主要應用對象,是當前微全分析系統領域發展的重點。它的目標是把整個化驗室的功能,包括采樣、稀釋、加試劑、反應、分離、檢測等集...
SU8微流控模具加工技術與精度控制:SU8作為負性光刻膠,廣泛應用于6英寸以下硅片、石英片的單套或套刻微流控模具加工,可實現5-500μm高度的三維結構制造。加工流程包括:基板清洗→底涂處理→SU8涂膠(轉速500-5000rpm,控制厚度1-500μm)→前烘→曝光(紫外光強度50-200mJ/cm2)→后烘→顯影(PGMEA溶液,時間1-10分鐘)。通過優化曝光劑量與顯影時間,可實現側壁垂直度>88°,**小線寬10μm,高度誤差<±2%。在多層套刻加工中,采用對準標記視覺識別系統(精度±1μm),確保上下層結構偏差<5μm,適用于復雜三維流道模具制備。該模具可用于PDMS模塑成型,復制精...
MEMS四種刻蝕工藝的不同需求: 1.體硅刻蝕:一些塊體蝕刻些微機電組件制造過程中需要蝕刻挖除較大量的Si基材,如壓力傳感器即為一例,即通過蝕刻硅襯底背面形成深的孔洞,但未蝕穿正面,在正面形成一層薄膜。還有其他組件需蝕穿晶圓,不是完全蝕透晶背而是直到停在晶背的鍍層上。基于Bosch工藝的一項特點,當要維持一個近乎于垂直且平滑的側壁輪廓時,是很難獲得高蝕刻率的。因此通常為達到很高的蝕刻率,一般避免不了伴隨產生具有輕微傾斜角度的側壁輪廓。不過當采用這類塊體蝕刻時,工藝中很少需要垂直的側壁。 2.準確刻蝕:精確蝕刻精確蝕刻工藝是專門為體積較小、垂直度和側壁輪廓平滑性上升為關鍵因素的組...
基于MEMS技術的SAW器件的工作模式和原理: 聲表面波器件一般使用壓電晶體(例如石英晶體等)作為媒介,然后通過外加一正電壓產生聲波,并通過襯底進行傳播,然后轉換成電信號輸出。聲表面波傳感器中起主導作用的主要是壓電效應,其設計時需要考慮多種因素:如相對尺寸、敏感性、效率等。一般地,無線無源聲表面波傳感器的信號頻率范圍從40MHz到幾個GHz。圖2所示為聲表面波傳感器常見的結構,主要部分包括壓電襯底天線、敏感薄膜、IDT等。傳感器的敏感層通過改變聲表面波的速度來實現頻率的變化。 無線無源聲表面波系統包:發射器、接收器、聲表面波器件、通信頻道。發射器和接收器組合成收發器或者解讀器的...
MEMS四種刻蝕工藝的不同需求: 1.體硅刻蝕:一些塊體蝕刻些微機電組件制造過程中需要蝕刻挖除較大量的Si基材,如壓力傳感器即為一例,即通過蝕刻硅襯底背面形成深的孔洞,但未蝕穿正面,在正面形成一層薄膜。還有其他組件需蝕穿晶圓,不是完全蝕透晶背而是直到停在晶背的鍍層上。基于Bosch工藝的一項特點,當要維持一個近乎于垂直且平滑的側壁輪廓時,是很難獲得高蝕刻率的。因此通常為達到很高的蝕刻率,一般避免不了伴隨產生具有輕微傾斜角度的側壁輪廓。不過當采用這類塊體蝕刻時,工藝中很少需要垂直的側壁。 2.準確刻蝕:精確蝕刻精確蝕刻工藝是專門為體積較小、垂直度和側壁輪廓平滑性上升為關鍵因素的組...
MEMS發展的目標在于,通過微型化、集成化來探索新原理、新功能的元件和系統,開辟一個新技術領域和產業。MEMS可以完成大尺寸機電系統所不能完成的任務,也可嵌入大尺寸系統中,把自動化、智能化和可靠性水平提高到一個新的水平。21世紀MEMS將逐步從實驗室走向實用化,對工農業、信息、環境、生物工程、醫療、空間技術和科學發展產生重大影響。MEMS(微機電系統)大量用于汽車安全氣囊,而后以MEMS傳感器的形式被大量應用在汽車的各個領域,隨著MEMS技術的進一步發展,以及應用終端“輕、薄、短、小”的特點,對小體積高性能的MEMS產品需求增勢迅猛,消費電子、醫療等領域也大量出現了MEMS產品的身影。MEMS...
國內政策大力推動MEMS產業發展:國家政策大力支持傳感器發展,國內MEMS企業擁有好的發展環境。我國高度重視MEMS和傳感器技術發展,在2017年工信部出臺的《智能傳感器產業三年行動指南(2017-2019)》中,明確指出要著力突破硅基MEMS加工技術、MEMS與互補金屬氧化物半導體(CMOS)集成、非硅模塊化集成等工藝技術,推動發展器件級、晶圓級MEMS封裝和系統級測試技術。國家政策高度支持MEMS制造企業研發創新,政策驅動下,國內MEMS制造企業獲得發展良機。MEMS具有以下幾個基本特點?福建MEMS微納米加工產業化超薄PDMS與光學玻璃的鍵合工藝優化:超薄PDMS(100μm以上)與光學...
MEMS多重轉印工藝與硬質塑料芯片快速成型:針對硬質塑料芯片的快速開發需求,公司**MEMS多重轉印工藝。通過紫外光固化膠將硅母模上的微結構(精度±1μm)轉印至PMMA、COC等工程塑料,10個工作日內即可完成從設計到成品的全流程交付。以器官芯片為例,該工藝制造的多層PMMA芯片集成血管網絡與組織隔室,可模擬肺部的氣體交換功能,用于藥物毒性測試時,數據重復性較傳統方法提升80%。此外,COP材質芯片憑借**蛋白吸附性(<3ng/cm2),成為抗體篩選與蛋白質結晶的**載體。該技術還支持復雜三維結構加工,例如仿生肝小葉芯片中的正弦狀微流道,可精細調控細胞剪切力,提升原代肝細胞活性至95%以上。...
PDMS金屬流道芯片的復合加工工藝:PDMS金屬流道芯片通過在柔性PDMS流道內集成金屬鍍層,實現流體控制與電信號檢測的一體化設計。加工流程包括:首先利用軟光刻技術在硅模上制備50-200μm寬度的流道結構,澆筑PDMS預聚體并固化成型;然后通過氧等離子體處理流道表面,使其親水化以促進金屬前驅體吸附;采用磁控濺射技術沉積50-200nm厚度的金/鉑金屬層,經化學鍍增厚至1-5μm,形成連續導電流道;***與PET基板通過等離子體鍵合密封,確保流體無泄漏。金屬流道的表面粗糙度<50nm,電阻<10Ω/cm,適用于電化學檢測、電滲泵驅動等場景。典型應用如微流控電化學傳感器,在10μL/min流速下...
MEMS制作工藝-太赫茲超材料器件應用前景: 在通信系統、雷達屏蔽、空間勘測等領域都有著重要的應用前景,近年來受到學術界的關注。基于微米納米技術設計的周期微納超材料能夠在太赫茲波段表現出優異的敏感特性,特別是可與石墨烯二維材料集成設計,獲得更優的頻譜調制特性。因此、將太赫茲超材料和石墨烯二維材料集成,通過理論研究、軟件仿真、流片測試實現了石墨烯太赫茲調制器的制備。能夠在低頻帶濾波和高頻帶超寬帶濾波的太赫茲濾波器,通過測試驗證了理論和仿真的正確性,將超材料與石墨烯集成制備的太赫茲調制器可對太赫茲波進行調制。 128 像素視網膜假體芯片已批量交付,臨床前實驗針對視網膜病變患者重建基本視力...
MEMS技術的主要分類:生物MEMS技術是用MEMS技術制造的化學/生物微型分析和檢測芯片或儀器,統稱為Bio-sensor技術,是一類在襯底上制造出的微型驅動泵、微控制閥、通道網絡、樣品處理器、混合池、計量、增擴器、反應器、分離器以及檢測器等元器件并集成為多功能芯片。可以實現樣品的進樣、稀釋、加試劑、混合、增擴、反應、分離、檢測和后處理等分析全過程。它把傳統的分析實驗室功能微縮在一個芯片上。生物MEMS系統具有微型化、集成化、智能化、成本低的特點。功能上有獲取信息量大、分析效率高、系統與外部連接少、實時通信、連續檢測的特點。國際上生物MEMS的研究已成為熱點,不久將為生物、化學分析系統帶來一...
超聲影像芯片的全集成MEMS設計與性能突破:針對超聲PZT換能器及CMUT/PMUT新型傳感器的收發需求,公司開發了**SoC超聲收發芯片,采用0.18mm高壓SOI工藝實現發射與開關復用,大幅節省芯片面積的同時提升性能。在發射端,通過MEMS高壓驅動電路設計,實現±100V峰值輸出電壓與1A持續輸出電流,較TI同類產品提升30%,滿足深部組織成像的能量需求;接收端集成12位ADC,采樣率可達100Msps,信噪比(SNR)達73.5dB,有效提升弱信號檢測能力。芯片采用多層金屬布線與硅通孔(TSV)技術,實現3D堆疊集成,封裝尺寸較傳統方案縮小40%。在二次諧波抑制方面,通過優化版圖布局與寄...
MEMS多重轉印工藝與硬質塑料芯片快速成型:針對硬質塑料芯片的快速開發需求,公司**MEMS多重轉印工藝。通過紫外光固化膠將硅母模上的微結構(精度±1μm)轉印至PMMA、COC等工程塑料,10個工作日內即可完成從設計到成品的全流程交付。以器官芯片為例,該工藝制造的多層PMMA芯片集成血管網絡與組織隔室,可模擬肺部的氣體交換功能,用于藥物毒性測試時,數據重復性較傳統方法提升80%。此外,COP材質芯片憑借**蛋白吸附性(<3ng/cm2),成為抗體篩選與蛋白質結晶的**載體。該技術還支持復雜三維結構加工,例如仿生肝小葉芯片中的正弦狀微流道,可精細調控細胞剪切力,提升原代肝細胞活性至95%以上。...
通過MEMS技術制作的生物傳感器,圍繞細胞分選檢測、生物分子檢測、人工聽覺微系統等方向,突破了高通量細胞圖形化、片上細胞聚焦分選、耳蝸內聲電混合刺激、高時空分辨率相位差分檢測等一批具有自主知識產權的關鍵技術,取得了一批原創性成果,研制了具有世界很高水平的高通量原位細胞多模式檢測系統、流式細胞儀、系列流式細胞檢測芯片等檢測儀器,打破了相關領域國際廠商的技術封鎖和壟斷。總之,面向醫療健康領域的重大需求,經過多年持續的努力,我們取得一系列具有國際先進水平的科研成果,部分技術處于國際前列地位,其中多項技術尚屬國際開創。微納加工產業化能力覆蓋設計、工藝、量產全鏈條,月產能達 50,000 片并持續技術創...
MEMS制作工藝-微流控芯片: 微流控芯片技術(Microfluidics)是把生物、化學、醫學分析過程的樣品制備、反應、分離、檢測等基本操作單元集成到一塊微米尺度的芯片上,自動完成分析全過程。微流控芯片(microfluidicchip)是當前微全分析系統(MiniaturizedTotalAnalysisSystems)發展的熱點領域。 微流控芯片分析以芯片為操作平臺,同時以分析化學為基礎,以微機電加工技術為依托,以微管道網絡為結構特征,以生命科學為目前主要應用對象,是當前微全分析系統領域發展的重點。它的目標是把整個化驗室的功能,包括采樣、稀釋、加試劑、反應、分離、檢測等集...
超薄石英玻璃雙面套刻加工技術解析:在厚度100μm以上的超薄石英玻璃基板上進行雙面套刻加工,是實現高集成度微流控芯片與光學器件的關鍵技術。公司采用激光微加工與紫外光刻結合工藝,首先通過CO?激光切割實現玻璃基板的高精度成型(邊緣誤差<±5μm),然后利用雙面光刻對準系統(精度±1μm)進行微結構加工。正面通過干法刻蝕制備5-50μm深度的微流道,背面采用離子束濺射沉積100nm厚度的金屬電極層,經光刻剝離形成微米級電極陣列。針對玻璃材質的脆性特點,開發了低溫鍵合技術(150-200℃),使用硅基粘合劑實現雙面結構的密封,鍵合強度>3MPa,耐水壓>50kPa。該技術應用于光聲成像芯片時,正面微...
微機電系統是指集微型傳感器、執行器以及信號處理和控制電路、接口電路、通信和電源于一體的微型機電系統,是一個智能系統。主要由傳感器、作動器和微能源三大部分組成。微機電系統具有以下幾個基本特點,微型化、智能化、多功能、高集成度。微機電系統。它是通過系統的微型化、集成化來探索具有新原理、新功能的元件和系統微機電系統。微機電系統涉及航空航天、信息通信、生物化學、醫療、自動控制、消費電子以及兵器等應用領域。微機電系統的制造工藝主要有集成電路工藝、微米/納米制造工藝、小機械工藝和其他特種加工工種。微機電系統技術基礎主要包括設計與仿真技術、材料與加工技術、封裝與裝配技術、測量與測試技術、集成與系統技術等。M...