膜片鉗技術的建立。拋光并填充玻璃管微電極,并將其固定在電極支架中。2.通過與電極支架連接的導管向微電極施加壓力,直到電極浸入記錄槽溶液中。3.當電極浸入溶液中時,給電極一個測量脈沖(命令電壓,如5-10ms,10mV)讀取電流,根據歐姆定律計算電阻。4.通過膜...
離子通道結構研究∶目前,絕大多數離子通道的一級結構得到了闡明但根本的還是要搞清楚各種離子通道的三維結構,在這方面,美國的二位科學家彼得阿格雷和羅德里克麥金農做出了一些開創性的工作,他們到用X光繞射方法得到了K離子通道的三維結構,二位因此獲得2003年諾貝系化學...
高阻封接技術還明顯降低了電流記錄的背景噪聲,從而戲劇性地提高了時間、空間及電流分辨率,如時間分辨率可達10μs、空間分辨率可達1平方微米及電流分辨率可達10-12A。影響電流記錄分辨率的背景噪聲除了來自于膜片鉗放大器本身外,主要還是信號源的熱噪聲。信號源如同一...
資料分析:一般電學性質∶通過I/V關系計算得到單通道電導,觀察通道有無整流。通過離子選擇性、翻轉電位或其它通道的條件初步確定通道類型。通道動力學分析∶開放時間、開放概率、關閉時間、通道的時間依賴性失活、開放與關閉類型(簇狀猝發,Burst)樣開放與閃動樣短暫關...
膜片鉗技術本質上也屬于電壓鉗范疇,兩者的區別關鍵在于:①膜電位固定的方法不同;②電位固定的細胞膜面積不同,進而所研究的離子通道數目不同。電壓鉗技術主要是通過保持細胞跨膜電位不變,并迅速控制其數值,以觀察在不同膜電位條件下膜電流情況。因此只能用來研究整個細胞膜或...
ePatch雖然設備非常小巧,但功能完備,傳統膜片鉗設備能做的實驗,用ePatch幾乎都能做。具有voltage-clamp,current-clamp,zerocurrent-clamp三種模式,自動電極電壓飄移補償,C-fast-C-slow-R-seri...
細胞是動物和人體的基本單元,細胞與細胞內的通信是依靠其膜上的離子通道進行的,離子和離子通道是細胞興奮的基礎,亦即產生生物電信號的基礎,生物電信號通常用電學或電子學方法進行測量。由此形成了一門細胞學科--電生理學。膜片鉗技術已成為研究離子通道的黃金標準。電壓門控...
1990年初,當WinfriedDenk剛從康奈爾大學博士畢業準備前往瑞士讀博后時,他看了一本關于激光掃描顯微鏡的書,從中了解到非線性光學效應——強光和物質的相互作用。當時,Denk有同事研究生物樣品中的鈣離子但苦于沒有強大的紫外激光器和光學元件,于是他就想到...
雙光子熒光顯微鏡是結合了激光掃描共聚焦顯微鏡和雙光子激發技術的一種新技術。雙光子激發的基本原理是:在高光子密度的情況下,熒光分子可以同時吸收2個長波長的光子,在經過一個很短的所謂激發態壽命的時間后,發射出一個波長較短的光子;其效果和使用一個波長為長波長一半的光...
電壓鉗的缺點∶電壓鉗技術目前主要用于巨火細胞的全細胞電流研究,特別在分子克隆的卵母細胞表達電流的鑒定中發揮其它技術不能替代的作用。但也有其致命的弱點1、微電極需刺破細胞膜進入細胞,以致造成細胞漿流失,破壞了細胞生理功能的完整性;2、不能測定單一通道電流。因為電...
細胞是動物和人體的基本單元,細胞與細胞內的通信是依靠其膜上的離子通道進行的,離子和離子通道是細胞興奮的基礎,亦即產生生物電信號的基礎,生物電信號通常用電學或電子學方法進行測量。由此形成了一門細胞學科--電生理學。膜片鉗技術已成為研究離子通道的黃金標準。電壓門控...
雙光子技術在醫療診斷應用中具有巨大的潛力,該領域還未形成標準和體系,還仍需要系統的醫學研究與龐大的醫療數據加以支撐,通過研究人體基于多光子成像技術,進行細胞結構、生化成分、微環境、組織形態、代謝功能的影響信息,找到與疾病的細胞學、分子生物學、組織病理學、診斷和...
實驗溶液浸溶細胞溶液和微電極玻璃管內的填充液成分對全細胞膜片鉗記錄也是很重要的內容,這關系到封接的容易程度、細胞存活狀態及膜電位的狀態等。在實驗記錄過程中,尤其是神經生物學實驗,需要迅速更換細胞浸溶液濃度以免受體敏感性降低(desensitization)或需...
內面向外膜片(inside-outpatch)高阻封接形成后,在將微管電極輕輕提起,使其與細胞分離,電極端形成密封小泡,在空氣中短暫暴露幾秒鐘后,小泡破裂再回到溶液中就得到“內面向外”膜片。此時膜片兩側的膜電位由固定電位和電壓脈沖控制。浴槽電位是地電位,膜電位...
雙光子技術在醫療診斷應用中具有巨大的潛力,需要系統的醫學研究與龐大的醫療數據加以支撐,通過研究人體基于多光子成像技術,進行細胞結構、生化成分、微環境、組織形態、代謝功能的影響信息,找到與疾病的細胞學、分子生物學、組織病理學、診斷和特征的關聯關系,共同探究生理病...
隨著技術的發展,雙光子顯微鏡的性能得到不斷地優化,結合它的特點,大致可以分成深和活兩個方面的提升。要想讓激發激光進入更深的層面,大致可從兩個方面入手,裝置優化與標本改造。關于裝置優化,我們可以把激光束變得更細,使能量更加集中,就能讓激光穿透更深。關于標本,其中...
使用雙光子顯微鏡可以以亞細胞分辨率對鈣離子傳感器和谷氨酸傳感器成像,從而測量不透明大腦深處的活動;成像膜電壓變化能直接反映神經元活動,但神經元活動的速度對于常規的2PM來說太快。目前電壓成像主要通過寬場顯微鏡實現,但它的空間分辨率較差并且只是于淺層深度。因此要...
由于具有較高輸出功率的光源可以提高成像速度,在我們的實驗中,時間分辨率主要是受OPO輸出可見光激光功率的限制。盡管在單點掃描系統中,v2PE激發會使得空間分辨率提高,但多聚焦v2PE顯微鏡具有與1PE多聚焦顯微鏡近乎相同的橫向分辨率,這主要是多聚焦成像和單點掃...
全細胞膜片鉗記錄(whole-cellpatch-clamprecording)是應用*早,也是*廣的鉗位技術,它相當于連續的單電極電壓鉗位記錄,也就是說全細胞記錄類似于傳統的細胞內記錄,但它具有更大的優越性,如高分辨率、低噪聲、極好的穩定性以及能控制細胞內的...
目前,絕大多數離子通道的一級結構得到了闡明但根本的還是要搞清楚各種離子通道的三維結構,在這方面,美國的二位科學家彼得阿格雷和羅德里克麥金農做出了一些開創性的工作,他們到用X光繞射方法得到了K離子通道的三維結構,二位因此獲得2003年諾貝系化學獎。有關離子通道結...
配合了雙光子激發技術,激光共聚掃描顯微鏡則能更好得發揮功效。那么什么是雙光子激發技術呢?在高光子密度的情況下,熒光分子可以同時吸收2個長波長的光子使電子躍遷到較高能級,經過一個很短的時間后,電子再躍遷回低能級同時放出一個波長為長波長一半的光子(P=h/λ)。利...
把膜電位鉗位電壓調到-80--100mV,再用鉗位放大器的控制鍵把全細胞瞬態充電電流調定至零位(EPC-10的控制鍵稱為C-slow和C-series;Axopatch200標為全細胞電容和系列電阻)。寫下細胞的電容值Cc和未補整的系列電阻值Rs,用于消除全細...
從雙光子的原理和特點我們就可以明顯的得出雙光子的優點:☆穿透能力強:相對于紫外光,可見光和近紅外光都具有更強的穿透能力,因而受生物組織散射的影響更小,解決對生物組織中深層物質的層析成像研究問題;☆高分辨率:由于雙光子吸收截面很小,只有在焦平面很小的區域內可以激...
把膜電位鉗位電壓調到-80--100mV,再用鉗位放大器的控制鍵把全細胞瞬態充電電流調定至零位(EPC-10的控制鍵稱為C-slow和C-series;Axopatch200標為全細胞電容和系列電阻)。寫下細胞的電容值Cc和未補整的系列電阻值Rs,用于消除全細...
電壓鉗的缺點∶電壓鉗技術目前主要用于巨火細胞的全細胞電流研究,特別在分子克隆的卵母細胞表達電流的鑒定中發揮其它技術不能替代的作用。但也有其致命的弱點1、微電極需刺破細胞膜進入細胞,以致造成細胞漿流失,破壞了細胞生理功能的完整性;2、不能測定單一通道電流。因為電...
隨著技術的發展,雙光子顯微鏡的性能得到不斷地優化,結合它的特點,大致可以分成深和活兩個方面的提升。深要想讓激發激光進入更深的層面,大致可從兩個方面入手,裝置優化與標本改造。關于裝置優化,我們可以把激光束變得更細,使能量更加集中,就能讓激光穿透更深。關于標本,其...
細胞是動物和人體的基本單元,細胞與細胞內的通信是依靠其膜上的離子通道進行的,離子和離子通道是細胞興奮的基礎,亦即產生生物電信號的基礎,生物電信號通常用電學或電子學方法進行測量。由此形成了一門細胞學科--電生理學。膜片鉗技術已成為研究離子通道的黃金標準。電壓門控...
WinfriedDenk較初使用的光源是染料飛秒激光器(100fs脈寬、630nm可見光波長)。雖然染料激光器對于實驗室演示尚可,但是使用很不方便所以遠未實現商用。很快雙光子顯微鏡的標配光源就變成了飛秒鈦寶石激光器。除了固態光源優勢,鈦寶石激光器還具有較寬的近...
摻雜可以明顯影響碳點(CDs)的發射和激發特性,使雙光子碳點(TP-CDs)具有本征雙光子激發特性和605nm的紅光發射特性。在638nm激光照射下,除了長波激發和發射外,還可以實現活性氧(ROS)的產生,這為光動力技術提供了巨大的可能性。更重要的是,通過各種...
雙光子吸收理論早在1931年就由諾獎得主MariaGoeppertMayer提出,30年后因為有了激光才得到實驗驗證,但是到WinfriedDenk發明雙光子顯微鏡又用了將近30年。要理解雙光子的技術挑戰和飛秒激光發揮的重要作用,首先要了解其中的非線性過程。雙...