點頻,即周期采集點數,因為激光雷達在旋轉掃描,因此水平方向上掃描的點數和激光雷達的掃描頻率有一定的關系,掃描越快則點數會相對較少,掃描慢則點數相對較多。一般這個參數也被稱為水平分辨率,比如激光雷達的水平分辨率為 0.2°,那么掃描的點數為 360°/0.2°=1800,也就是說水平方向會掃描 1800 次。那么激光雷達旋轉一周,即一個掃描周期內掃描的點數為 1800*64=115200。比如禾賽 64 線激光雷達,掃描頻率為 10Hz 的時候水平角分辨率為 0.2°,在掃描頻率為 20Hz 的時候角分辨率為 0.4°(掃描快了,分辨率變低了)。輸出的點數和計算的也相符合 1152000 pts/s。覽沃 Mid - 360 抗干擾能力強,室內多雷達信號混行也能穩定工作。浙江傲覽Avia激光雷達廠商
激光雷達能夠準確輸出障礙物的大小和距離,通過算法對點云數據的處理可以輸出障礙物的3D框,如:3D行人檢測、3D車輛檢測等;亦可進行車道線檢測、場景分割等任務。除了障礙物感知,激光雷達還可以用來制作高精度地圖。地圖采集過程中,激光雷達每隔一小段時間輸出一幀點云數據,這些點云數據包含環境的準確三維信息,通過把這些點云數據做拼接,就可以得到該區域的高精度地圖。在定位方面,智能車在行駛過程中利用當前激光雷達采集的點云數據幀和高精度地圖做匹配,可以獲取智能車的位置。江蘇三維激光雷達Mid - 360可達70 米 @80% 反射率探測,適應室內外不同光照。
要知道光速是每秒30萬公里。要區分目標厘米級別的精確距離,那對傳輸時間測量分辨率必須做到1納秒。要如此精確的測量時間,因此對應的測量系統的成本就很難降到很低,需要使用巧妙的方法降低測量難度。首先,我們需要明確,激光雷達并不是單獨運作的,一般是由激光發射器、接收器和慣性定位導航三個主要模塊組成。當激光雷達工作的時候,會對外發射激光,在遇到物體后,激光折射回來被CMOS傳感器接收,從而測得本體到障礙物的距離。從原理來看,只要需要知道光速、和從發射到CMOS感知的時間就可以測出障礙物的距離,再結合實時GPS、慣性導航信息與計算激光雷達發射出去角度,系統就可以得到前方物體的坐標方位和距離信息。
在三維模型重建方面,較初的研究集中于鄰接關系和初始姿態均已知時的點云精配準、點云融合以及三維表面重建。在此,鄰接關系用以指明哪些點云與給定的某幅點云之間具有一定的重疊區域,該關系通常通過記錄每幅點云的掃描順序得到。而初始姿態則依賴于轉臺標定、物體表面標記點或者人工選取對應點等方式實現。這類算法需要較多的人工干預,因而自動化程度不高。接著,研究人員轉向點云鄰接關系已知但初始姿態未知情況下的三維模型重建,常見方法有基于關鍵點匹配、基于線匹配、以及基于面匹配 等三類算法。倉儲管理運用激光雷達清點庫存,提高貨物盤點效率。
而如較新的 Livox Horizon 激光雷達,也包含了多回波信息及噪點信息,格式如下:每個標記信息由1字節組成:該字節中 bit7 和 bit6 為頭一組,bit5 和 bit4 為第二組,bit3 和 bit2 為第三組,bit1 和 bit0 為第四組。第二組表示的是該采樣點的回波次序。由于 Livox Horizon 采用同軸光路,即使外部無被測物體,其內部的光學系統也會產生一個回波,該回波記為第 0 個回波。隨后,若激光出射方向存在可被探測的物體,則較先返回系統的激光回波記為第 1 個回波,隨后為第 2 個回波,以此類推。如果被探測物體距離過近(例如 1.5m),第 1 個回波將會融合到第 0 個回波里,該回波記為第 0 個回波。采用主動抗串擾設計,覽沃 Mid - 360 在多雷達環境下穩定運行互不干擾。河北無人礦車激光雷達
激光雷達的高精度三維成像為地質勘探提供了有力支持。浙江傲覽Avia激光雷達廠商
激光的誕生,光子入射到物質中,以刺激電子從較高能級過渡到較低能級,并發射光子。當原子處于某種激發態時,有能量合適的光子從該原子附近通過,該原子就會釋放出一個具有同樣電勢能的光子,從而躍遷到低能級狀態。入射光子和發射光子具有相同的波長和相位,該波長對應于兩個能級之間的能量差。一個光子刺激一個原子發射另一個光子,因此產生兩個相同的光子,1917年,愛因斯坦在量子理論的基礎上提出了一個嶄新的概念一一受激輻射:即在物質與輻射場的相互作用中,構成物質的原子或分子可以在光子的激勵下產生光子。浙江傲覽Avia激光雷達廠商